Heat Recovery Systems For hot air and hot water applications ## Why choose heat recovery? In fact, the question should be: Why not? Amazingly, virtually 100% of the electrical energy supplied to a rotary screw compressor is converted into heat energy. Up to 96% of this energy can be recovered and reused for heating purposes. This not only reduces primary energy consumption, but also significantly improves a company's overall energy balance. #### **Compressor heat** Rotary screw compressors, boosters and blowers convert almost 100% of the electrical drive energy supplied to them into heat. The heat flow diagram (below) shows how this energy is distributed within the compressor system and how much of it is reusable. Approximately 96% of the energy input can be recovered for reuse, whilst 2% remains in the compressed air and another 2% is dissipated into the ambient surroundings. But where does the usable energy in compressed air come from? The answer is actually quite simple and perhaps surprising: during the compression process, the compressor converts electrical drive energy into heat energy. At the same time, it charges the intake air with energy potential. This corresponds to approximately 25% of the compressor's electrical power consumption. However, this energy only becomes usable when the compressed air expands again at its point of consumption and, in doing so, absorbs heat energy from the ambient surroundings. Of course, the amount of energy available for reuse depends on the pressure and leakage losses within the compressed air system. ## Save money whilst conserving the environment | Diata tima haat ayahan gay ayatama | Compressor size | | | | | | | |---|-------------------------|---------------------------|----------------------------|--|--|--|--| | Plate-type heat exchanger systems | "Small" | "Medium" | "Large" | | | | | | Compressor model | SM 16 | BSD 83 | FSD 475 | | | | | | Drive motor rated power | 9 kW | 45 kW | 250 kW | | | | | | Detection on the second Unation of | € 857 | € 9,037 | € 45,522 | | | | | | Potential savings per year: Heating oil | 4671 kg CO ₂ | 49,285 kg CO ₂ | 248,274 kg CO ₂ | | | | | Heat recovery systems - Hot air # Minimise primary energy consumption for heating As self-contained complete systems, modern rotary screw compressors, boosters and blowers are especially well suited for heat recovery systems. In particular, direct usage of the recoverable heat via an exhaust air ducting system enables up to 96% of the total energy input to be recovered and reused. This is the case regardless of whether a fluid-injecting or a dry-running rotary screw compressor, a booster or a blower is involved. #### Heating with hot air By using heated cooling air from the compressor, neighbouring spaces can be heated simply and effectively via exhaust air ducting. In this way, up to 96% of the electrical power supplied to a compressor can be reused – either for the purposes of space heating or for use as process heat. When using recovered compressor exhaust heat for space heating purposes, exhaust air ducting simply feeds the heated cooling air to wherever it is needed, thereby allowing such spaces as storage areas or workshops to be heated free of charge. A ventilation flap allows the heated cooling air to be conveyed outside during summer operation (S) or to the areas that require heating during winter operation (W). # Minimise primary energy consumption for process, service and hot water heating By reusing the exhaust heat from the compressor, heat exchanger systems can provide heating and service water on demand at temperatures up to +70°C, or even +85°C if required. For standard applications using heat recovery systems for the production of hot water and service water, PTG platetype heat exchangers are used. Special, fail-safe heat exchangers are used in the case of operations without an interconnected water circuit, or for applications with the highest demands of purity for the heated water, such as with cleaning water in the food industry. Hot water with temperatures up to +70°C can easily be produced using a heat exchanger system, with even higher temperatures available upon request. #### **Use heat energy for your heating systems** Up to 76% of the electrical power originally supplied to a compressor can be recovered for use in hot water heating systems and service water installations. This significantly reduces the amount of primary energy required for heating purposes. #### PTG plate-type heat exchanger High-quality, stainless steel plate-type heat exchangers are the first choice when it comes to using heat recovered from rotary screw compressors for heating process and service water, or for generating process heat. ## **Equipment for rotary screw compressors** #### Hot air heat recovery All KAESER rotary screw compressors can be connected to user-end exhaust air ducting, allowing the heated cooling air to be used for the purposes of space heating. Possible applications include drying processes, heating of halls and buildings, air curtain systems and the preheating of burner air. #### PTG plate-type heat exchanger system Rotary screw compressors from the SM series (from 5.5 kW) and upwards can be equipped with PTG systems. Depending on the size of the system, the PTG heat exchanger can either be integrated into the compressor or installed externally. Possible areas of application: Supplying heat for central heating systems, laundry facilities, electroplating, general process heat. With special, fail-safe heat exchangers: Cleaning water in the food industry, swimming pool heating, hot water for shower and washroom facilities. #### Shell and tube heat exchanger For cases where the cooling water quality is inadequate (e.g. hard, contaminated cooling water or seawater with high salt content), special shell and tube heat exchangers are optionally available. Our compressed air specialists can advise you regarding the right design for your particular application. #### **Heating - not just needed in winter** It goes without saying that heating is necessary during the winter months. However, it is also required to a greater or lesser extent throughout the year, e.g. for supplying hot water. This means that the energy demand for heating is actually approximately 4000 hours per year. $Image: Heat\ recovery\ process.\ Potable\ water\ applications\ only\ possible\ in\ conjunction\ with\ special,\ safety\ heat\ exchanger$ $Image: Internal\ layout\ of\ a\ compressor-system\ comprising\ plate-type\ heat\ exchanger,\ thermostatic\ valve\ and\ complete\ piping$ # **Technical specifications for...** ## **Hot air** | Туре | At max. | Rated | | Maximum available heating capacity | | Usable Cooling air | | Potential fuel oil savings | | | | Potential natural gas savings | | | |--|------------------------|--------------------------|------------------------------|------------------------------------|--------------------------------------|----------------------|--------------------------------------|--|-----------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------| | | gauge
pressure | motor
power | neating | сараспу | hot air
volume | heated by | Fuel oil | CO ₂ | | iting cost
avings | Natural gas | CO ₂ | | ating cost
avings | | | bar | kW | kW | MJ/h *) | m³/h | K (approx.) | I | kg | • | E/year | m³ | kg | | €/year | | SX 3
SX 4
SX 6
SX 8 | 8 | 2.2
3
4
5.5 | 2.7
3.4
4.4
6.0 | 10
12
16
22 | 1000
1000
1000
1300 | 8
10
13
14 | 608
766
992
1352 | 1658
2089
2705
3687 | 0 hrs/yr | 304
383
496
676 | 504
635
822
1120 | 1008
1270
1644
2240 | 0 hrs/yr | 302
381
493
672 | | SM 10
SM 13
SM 16 | 8 | 5.5
7.5
9 | 6.8
9.1
11.1 | 25
33
40 | 2100 | 10
13
16 | 1532
2051
2501 | 4178
5593
6820 | Savings potential for 2000 hrs/yr | 766
1,026
1,251 | 1270
1699
2073 | 2540
3398
4146 | Savings potential for 2000 hrs/yr | 762
1,019
1,244 | | SK 22
SK 25 | 8 | 11
15 | 13.2
16.5 | 48
59 | 2500
3000 | 16
17 | 2975
3718 | 8113
10,139 | ngs poter | 1,488
1,859 | 2465
3081 | 4930
6162 | ngs poter | 1,479
1,849 | | ASK 28
ASK 34
ASK 40 | 8 | 15
18.5
22 | 18.4
22.8
26.8 | 66
82
96 | 4000
4000
5000 | 14
17
16 | 4147
5138
6040 | 11,309
14,011
16,471 | Savir | 2,074
2,569
3,020 | 3436
4258
5005 | 6872
8516
10,010 | Savir | 2,062
2,555
3,003 | | ASD 35
ASD 40
ASD 50
ASD 60 | 8.5 | 18.5
22
25
30 | 19.9
23.5
28.0
34.6 | 72
85
101
125 | 3800
3800
4500
5400 | 16
19
19 | 8969
10,592
12,620
15,595 | 24,458
28,884
34,415
42,528 | | 4,485
5,296
6,310
7,798 | 7432
8777
10,458
12,923 | 14,864
17,554
20,916
25,846 | | 4,459
5,266
6,275
7,754 | | BSD 65
BSD 75
BSD 83 | 8.5 | 30
37
45 | 35.2
43.4
52.0 | 127
156
187 | 6500
8000
8000 | 16
16
20 | 15,865
19,561
23,437 | 43,264
53,343
63,913 | | 7,933
9,781
11,719 | 13,147
16,209
19,421 | 26,294
32,418
38,842 | | 7,888
9,725
11,653 | | CSD 85
CSD 105
CSD 125 | 8.5 | 45
55
75 | 50
62
75 | 179
223
270 | 9400
9400
10,700 | 16
20
21 | 22,445
27,944
33,803 | 61,208
76,203
92,181 | J. | 11,223
13,972
16,902 | 18,599
23,156
28,011 | 37,198
46,312
56,022 | , | 11,159
13,894
16,807 | | CSDX 140
CSDX 165 | 8.5 | 75
90 | 84
101 | 302
364 | 11,000
13,000 | 23
23 | 37,860
45,522 | 103,244
124,138 | 4000 hrs | 18,930
22,761 | 31,373
37,722 | 62,746
75,444 | 4000 hrs | 18,824
22,633 | | DSD 145
DSD 175
DSD 205
DSD 240 | 9
8.5
8.5
8.5 | 75
90
110
132 | 82
96
120
145 | 295
346
432
522 | 11,000
13,000
17,000
20,000 | 22
22
21
22 | 36,958
43,268
54,085
65,353 | 100,784
117,992
147,490
178,218 | s potential for 4000 hrs/yr | 18,479
21,634
27,043
32,677 | 30,626
35,854
44,818
54,155 | 61,252
71,708
89,636
108,310 | s potential for 4000 hrs/yr | 18,376
21,512
26,891
32,493 | | DSDX 245
DSDX 305 | 8.5 | 132
160 | 143
174 | 515
626 | 21,000 | 20
25 | 64,451
78,423 | 175,758
213,860 | Savings | 32,226
39,212 | 53,408
64,986 | 106,816
129,972 | Savings | 32,045
38,992 | | ESD 375
ESD 445 | 8.5 | 200
250 | 221
254 | 796
914 | 30,000
34,000 | 22
22 | 99,607
114,480 | 271,628
312,187 | | 49,804
57,240 | 82,540
94,865 | 165,080
189,730 | | 49,524
56,919 | | FSD 475
FSD 575 | 8.5 | 250
315 | 274
333 | 986
1199 | 40,000 | 21
25 | 123,494
150,086 | 336,768
409,285 | | 61,747
75,043 | 102,334
124,370 | 204,668
248,740 | | 61,400
74,622 | | HSD 662
HSD 722
HSD 782
HSD 842 | 8.5 | 360
400
450
500 | 21
24
25
28 | 76
86
90
101 | 10,000 | 6
7
7
8 | 9465
10,817
11,268
12,620 | 25,811
29,498
30,728
34,415 | | 4,733
5,409
5,634
6,310 | 7843
8964
9337
10,458 | 15,686
17,928
18,674
20,916 | | 4,706
5,378
5,602
6,275 | [&]quot;) 1 MJ/h = 1 kW x 3.6 #### Savings calculation example for ASD 50 | For fuel oil | | | | |--|-----------------------|------------|--------------------| | Maximum available heating capacity: | 28.0 kW | | | | Calorific value per litre of fuel oil: | 9861 kWh/l | | | | Fuel oil heating efficiency: | 90% | | | | Price per litre of fuel oil: | € 0.50/I | | | | | | | | | Cost savings: | 28.0 kW x 4000 hrs/yr | x € 0.50/l | = € 6,310 per year | | Oost savings. | 0.90 x 9861 kWh/l | A & 0.00/I | = € 0,010 per year | | i oi naturai gas | | | |-------------------------------------|---|----| | Maximum available heating capacity: | 28.0 kW | | | Calorific value per m³ natural gas: | 10.2 kWh/m³ | | | Natural gas heating efficiency: | 105% | | | Price per m³ of natural gas: | € 0.60 /m³ | | | | | | | | 28.0 kW x 4000 hrs/yr | | | Cost savings: | x 0.60 €/m³ = € 6,275 per yea
1.05 x 10.2 kWh/m³ | ar | | | | _ | # ...rotary screw compressors ## **Hot water** | Туре | At max. | Rated | | available | | er volume | PTG system location | Pote | ntial fuel oil | savin | gs | Potenti | al natural g | as sa | /ings | |--|------------------------|--------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|---------------------|--|--|-----------------------|--------------------------------------|--|--|-----------------------|--------------------------------------| | | gauge
pressure | motor
power | neaung | capacity | (neating | to 70 °C) | iocation | Fuel oil | CO ₂ | | iting cost
avings | Natural gas | CO ₂ | | ating cost
avings | | | bar | kW | kW | MJ/h *) | (ΔT 25 K) m ³ /h | (ΔT 55 K) m ³ /h | Int./ext. | 1 | kg | | E/year | m³ | kg | | €/year | | SM 10
SM 13
SM 16 | 8 | 5.5
7.5
9 | 4.5
6.2
7.6 | 16
22
27 | 0.16
0.21
0.29 | 0.07
0.10
0.13 | External | 1014
1397
1713 | 2765
3810
4671 | r 2000 hrs/yr | 507
699
857 | 840
1158
1419 | 1680
2316
2838 | r 2000 hrs/yr | 504
695
851 | | SK 22
SK 25 | 8 | 11
15 | 9.4
12.0 | 34
43 | 0.32
0.41 | 0.15
0.19 | External | 2118
2704 | 5776
7374 | tential fo | 1,059
1,352 | 1755
2241 | 3510
4482 | tential fo | 1,053
1,345 | | ASK 28
ASK 34
ASK 40 | 8 | 15
18.5
22 | 13.6
16.9
19.8 | 49
61
71 | 0.47
0.58
0.68 | 0.21
0.26
0.31 | Internal | 3065
3808
4462 | 8358
10,384
12,168 | Savings potential for | 1,533
1,904
2,231 | 2540
3156
3697 | 5080
6312
7394 | Savings potential for | 1,524
1,894
2,218 | | ASD 35
ASD 40
ASD 50
ASD 60 | 8.5 | 18.5
22
25
30 | 15.2
18.1
21.6
26.6 | 55
65
78
96 | 0.52
0.62
0.74
0.92 | 0.24
0.28
0.34
0.42 | Internal | 6851
8158
9735
11,989 | 18,683
22,247
26,547
32,694 | | 3,426
4,079
4,868
5,995 | 5677
6760
8067
9935 | 11,354
13,520
16,134
19,870 | | 3,406
4,056
4,840
5,961 | | BSD 65
BSD 75
BSD 83 | 8.5 | 30
37
45 | 27.1
33.5
40.1 | 98
121
144 | 0.93
1.15
1.38 | 0.42
0.52
0.63 | Internal | 12,214
15,099
18,073 | 33,308
41,175
49,285 | | 6,107
7,550
9,037 | 10,121
12,512
14,977 | 20,242
25,024
29,954 | | 6,073
7,507
8,986 | | CSD 85
CSD 105
CSD 125 | 8.5 | 45
55
75 | 38.6
48.4
58.6 | 139
174
211 | 1.33
1.67
2.02 | 0.60
0.76
0.92 | Internal | 17,397
21,814
26,412 | 47,442
59,487
72,026 | | 8,699
10,907
13,206 | 14,416
18,077
21,886 | 28,832
36,154
43,772 | _ | 8,650
10,846
13,132 | | CSDX 140
CSDX 165 | 8.5 | 75
90 | 66
80 | 238
288 | 2.30
2.80 | 1.03
1.25 | Internal | 29,747
36,057 | 81,120
98,327 | 4000 hrs/yr | 14,874
18,029 | 24,650
29,879 | 49,300
59,758 | 4000 hrs/yr | 14,790
17,927 | | DSD 145
DSD 175
DSD 205
DSD 240 | 9
8.5
8.5
8.5 | 75
90
110
132 | 61
71
88
107 | 220
256
317
385 | 2.10
2.40
3.00
3.70 | 0.96
1.11
1.38
1.68 | Internal | 27,493
32,000
39,662
48,226 | 74,973
87,264
108,158
131,512 | ootential for | 13,747
16,000
19,831
24,113 | 22,782
26,517
32,866
39,963 | 45,564
53,034
65,732
79,926 | ootential for | 13,669
15,910
19,720
23,978 | | DSDX 245
DSDX 305 | 8.5 | 132
160 | 105
129 | 378
464 | 3.60
4.40 | 1.64
2.04 | Internal | 47,324
58,142 | 129,053
158,553 | Savings | 23,662
29,071 | 39,216
48,179 | 78,432
96,358 | Savings | 23,530
28,907 | | ESD 375
ESD 445 | 8.5 | 200
250 | 162
187 | 583
673 | 5.60
6.40 | 2.54
2.93 | Internal | 73,015
84,283 | 199,112
229,840 | | 36,508
42,142 | 60,504
69,841 | 121,008
139,682 | | 36,302
41,905 | | FSD 475
FSD 575 | 8.5 | 250
315 | 202
246 | 727
886 | 7.00
8.50 | 3.16
3.85 | Internal | 91,043
110,874 | 248,274
302,353 | | 45,522
55,437 | 75,444
91,877 | 150,888
183,754 | | 45,266
55,126 | | HSD 662
HSD 722
HSD 782
HSD 842 | 8.5 | 360
400
450
500 | 291
323
348
374 | 1048
1163
1253
1346 | 10.00
11.10
12.00
12.90 | 4.56
5.06
5.45
5.86 | Internal | 131,156
145,579
156,847
168,565 | 357,662
396,994
427,722
459,677 | | 65,578
72,790
78,424
84,283 | 108,683
120,635
129,972
139,683 | 217,366
241,270
259,944
279,366 | | 65,210
72,381
77,983
83,810 | #### Savings calculation example for ASD 50 Maximum available heating capacity: 21.6 kW Calorific value per litre of fuel oil: 9861 kWh/l Fuel oil heating efficiency: Price per litre of fuel oil: 90% € 0.50/l Cost savings: 21.6 kW x 4000 hrs/yr 0.9 x 9861 kWh/l x € 0.50/l = **€ 4,868** per year Maximum available heating capacity: 21.6 kW Calorific value per m³ natural 10.2 kWh/m³ Natural gas heating efficiency: 105% Price per m³ of natural gas: € 0.60 /m³ Cost savings: 21.6 kW x 4000 hrs/yr x 0.60 €/m³ = € 4,840 per year Note: The potential energy savings indicated are based on compressors at operating temperature and max. gauge pressure (8.0 / 8.5 / 9.0 bar). At other pressures, values may vary. # **Heat recovery systems for...** ### **Hot air** The Air-Cooled Aftercooler (ACA) is an air/air heat exchanger. Process air is cooled in a cross-flow process, whereby ambient air is heated via a thermal energy exchange. In terms of a medium supply, only an electrical connection for the fan is needed. At an ambient temperature of +20°C, for example, the process air flowing into the cooler can be cooled down from +150°C to +30°C. The ACA offers particular advantages when it comes to the pneumatic conveying of temperature-sensitive bulk materials. Furthermore, should a production hall need to be heated during the winter, the ACA can do that as well. The exhaust air flow from the cooler contains up to 75% of the electrical power in the form of blower heat. To maximise the energy gain and ensure optimum cooling efficiency, the maximum pressure loss is no more than 35 mbar. An integrated thermostat monitors operation of the unit by detecting the process air discharge temperature and activates a floating contact by means of an adjustable trigger point. #### **Application examples** - Cooling of process air from blowers, e.g. for bulk materials conveying - Space heating for production halls ### **Hot water** The water-cooled WRN aftercooler is a shell and tube heat exchanger. With this system, the process air passes through multiple cooling pipes, around which water flows. The water serves as both a cooling and a heat transfer medium. This type of heat exchanger is individually customised for each project, so as to ensure that the drop in process air temperature and the increase in water temperature match the operator's requirements precisely. In order to minimise pressure loss resulting from the additional power consumption of the blower and to achieve maximum heat transfer, a variety of cooling pipe geometries are used. Furthermore, several different materials can be used for the cooling pipes, depending on the quality of the water supply. The cooler shrouding is enamel coated. The maximum achievable water temperature for the return flow is approx. 5 K below the process air inlet temperature inside the heat exchanger. #### **Application examples** - Integration into heating circuits to raise return air temperature - Integration into heat pump circuits - Floor heating - Sludge drying # ...blowers # **Technical specifications: Heat recovery systems...** ## **Hot air** | Model | Max. process air flow rate | Max. pressure loss | Max. fan flow rate *) | Fan power supply (400V) | Fan power ') | Total mass | Dimensions
W x D x H | Connection nominal width | |---------|----------------------------|--------------------|-----------------------|-------------------------|--------------|------------|-------------------------|--------------------------| | | Nm³/min | mbar | m³/h | А | W | kg | mm | DN | | ACA 53 | 5 | 15 | 1700 | 0.24 | 110 | 58 | 980 x 650 x 610 | 50 | | ACA 88 | 7 | 25 | 1700 | 0.24 | 110 | 58 | 980 x 650 x 610 | 65 | | ACA 130 | 12 | 25 | 3100 | 0.43 | 210 | 97 | 980 x 650 x 610 | 80 | | ACA 165 | 14 | 30 | 3100 | 0.43 | 210 | 97 | 980 x 650 x 610 | 100 | | ACA 235 | 22 | 30 | 6200 | 0.43 (2x) | 210 | 193 | 1900 x 850 x 1200 | 100 | | ACA 350 | 30 | 35 | 6200 | 0.43 (2x) | 210 | 199 | 1900 x 850 x 1280 | 150 | ^{*)} at max. compression ## Savings calculation example for ACA 350 (production hall heating) | Blower (37 kW) | | | | | | | |------------------------|-----------|--|--|--|--|--| | Flow rate: | 30 m³/min | | | | | | | Pressure differential: | 600 mbar | | | | | | | Inlet temperature: | 0 °C | | | | | | | Discharge temperature: | +52 °C | | | | | | | ACA 350 | | |----------------------------|----------------------------| | Heat output: | 25 kW | | Air heating capacity: | 2200 m³/h from 0 to +35 °C | | Process air pressure loss: | 35 mbar = 2.2 kW | Cost savings approx. € 5,600 per year* ^{*} Calculation as per rotary screw compressors # ...for blowers ## **Hot water** | Model | Nominal width | V max (air) | V max (H₂0) | Connection | dimensions | Dime | Weight | | |----------------|---------------|-------------|-------------|---------------|---------------|-------------|-----------|-----| | | | Nm³/min | m³/h | Air | Water | Ø Shrouding | Length *) | kg | | WRN 50 smooth | 125 | 15 | 1 | DN 125, PN 16 | 1 ¼ | 168 | 1410 | 71 | | WRN 90 smooth | 200 | 30 | 1.5 | DN 200, PN 16 | 1 1/4 | 245 | 1430 | 145 | | WRN 130 smooth | 250 | 42 | 2 | DN 250, PN 10 | 1 ½ | 273 | 1441 | 225 | | WRN 170 smooth | 300 | 57 | 2.5 | DN 300, PN 10 | 2 | 324 | 1441 | 280 | | WRN 250 smooth | 350 | 75 | 3 | DN 350, PN 10 | DN 65, PN 16 | 375 | 1641 | 400 | | WRN 350 smooth | 450 | 108 | 3.5 | DN 450, PN 10 | DN 80, PN 16 | 450 | 1649 | 590 | | WRN 450 smooth | 500 | 145 | 4.5 | DN 500, PN 10 | DN 100, PN 16 | 519 | 1655 | 690 | $^{^{\}star})$ With welded counterflange (included in scope of delivery) ### Savings calculation example for WRN 170 (supplementary heating) | Blower (37 kW) | | | | | | | |------------------------|-----------|--|--|--|--|--| | Flow rate: | 30 m³/min | | | | | | | Pressure differential: | 600 mbar | | | | | | | Inlet temperature: | 0 °C | | | | | | | Discharge temperature: | +52 °C | | | | | | | WRN 170 | | |----------------------------|--| | Heat output: | 14 kW | | Water heating capacity: | 600 l/h water from +25 °C to +45 °C | | Process air pressure loss: | 20 mbar = 2 kW (approx. 1.2 kW more at blower) | ### Cost savings approx. € 3,150 per year* ^{*} Calculation as per rotary screw compressors # The world is our home As one of the world's largest manufacturers of compressors, blowers and compressed air systems, KAESER KOMPRESSOREN is represented throughout the world by a comprehensive network of branches, subsidiaries and authorised distribution partners in over 140 countries. By offering innovative, efficient and reliable products and services, KAESER KOMPRESSOREN's experienced consultants and engineers work in close partnership with customers to enhance their competitive edge and to develop progressive system concepts that continuously push the boundaries of performance and technology. Moreover, decades of knowledge and expertise from this industry-leading systems provider are made available to each and every customer via the KAESER group's advanced global IT network. These advantages, coupled with KAESER's worldwide service organisation, ensure that every product operates at peak performance at all times, whilst providing maximum availability. #### KAESER COMPRESSORS Australia Pty. Ltd. Locked Bag 1406 – Dandenong South – Vic. 3164 45 Zenith Road – Dandenong – Vic. 3175 Phone: +61 39791 5999 – Fax: +61 39791 5733 www.kaeser.com – E-mail: info.australia@kaeser.com #### KAESER COMPRESSORS NZ Limited PO BOX 301261 – Albany – Auckland 0752 18B Tarndale Grove – Albany – Auckland 0632 Phone +64 9 941 0499 www.kaeser.com – E-mail: info.newzealand@kaeser.com